Properties and Estimation of GARCH(1,1) Model
نویسنده
چکیده
We study in depth the properties of the GARCH(1,1) model and the assumptions on the parameter space under which the process is stationary. In particular, we prove ergodicity and strong stationarity for the conditional variance (squared volatility) of the process. We show under which conditions higher order moments of the GARCH(1,1) process exist and conclude that GARCH processes are heavy-tailed. We investigate the sampling behavior of the quasi-maximum likelihood estimator of the Gaussian GARCH(1,1) model. A bounded conditional fourth moment of the rescaled variable (the ratio of the disturbance to the conditional standard deviation) is sufficient for the result. Consistent estimation and asymptotic normality are demonstrated, as well as consistent estimation of the asymptotic covariance matrix.
منابع مشابه
A Garch (1,1) Estimator with (almost) No Moment Conditions on the Error Term
A least squares estimation approach for the estimation of a GARCH (1,1) model is developed. The asymptotic properties of the estimator are studied given mild regularity conditions, which require only that the error term has a conditional moment of some order. We establish the consistency, asymptotic normality and the law of iterated logarithm for our estimate. The finite sample properties are a...
متن کاملHeavy Tail Behavior and Parameters Estimation of GARCH (1, 1) Process
In practice, Financial Time Series have serious volatility cluster, that is large volatility tend to be concentrated in a certain period of time, and small volatility tend to be concentrated in another period of time. While GARCH models can well describe the dynamic changes of the volatility of financial time series, and capture the cluster and heteroscedasticity phenomena. At the beginning of ...
متن کاملAn Empirical Evaluation of GARCH Models in Value-at-Risk Estimation: Evidence from the Macedonian Stock Exchange
Background: In light of the latest global financial crisis and the ongoing sovereign debt crisis, accurate measuring of market losses has become a very current issue. One of the most popular risk measures is Value-at-Risk (VaR). Objectives: Our paper has two main purposes. The first is to test the relative performance of selected GARCH-type models in terms of their ability of delivering volatil...
متن کاملThe Stock Returns Volatility based on the GARCH (1,1) Model: The Superiority of the Truncated Standard Normal Distribution in Forecasting Volatility
I n this paper, we specify that the GARCH(1,1) model has strong forecasting volatility and its usage under the truncated standard normal distribution (TSND) is more suitable than when it is under the normal and student-t distributions. On the contrary, no comparison was tried between the forecasting performance of volatility of the daily return series using the multi-step ahead forec...
متن کاملComparing the performance of GARCH (p,q) models with different methods of estimation for forecasting crude oil market volatility
The use of GARCH models to characterize crude oil price volatility is widely observed in the empirical literature. In this paper the efficiency of six univariate GARCH models and two methods of estimation the parameters for forecasting oil price volatility are examined and the best method for forecasting crude oil price volatility of Brent market is determined. All the examined models in this p...
متن کامل